

Roll No.

--	--	--	--	--	--	--	--	--	--

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E. (Full Time) - END SEMESTER EXAMINATIONS, June 2024

GEO-INFORMATICS

II Semester

PH3201 & Physics for Geoinformatics Engineering
(Regulation 2023)

Time: 3hrs

Max. Marks: 100

CO1	Acquire knowledge in specialty physics by further exploring space weather and the effect of those environments on satellites
CO2	Implement the heat transfer principles in remote sensing
CO3	Understand the basic optical principles
CO4	Understand the fundamentals of gravitation
CO5	Gain knowledge about different types of electro-optic sensors and its detection mechanism

BL – Bloom's Taxonomy Levels

(L1-Remembering, L2-Understanding, L3-Applying, L4-Analysing, L5-Evaluating, L6-Creating)

PART- A(10x2 = 20Marks)

(Answer all Questions)

Q.No	Questions	Marks	CO	BL
1	What is solar cycle?	2	CO1	L1
2	What are coronal mass ejections?	2	CO1	L1
3	State and explain the specific heat capacity.	2	CO2	L2
4	State any two differences between black and grey bodies.	2	CO2	L1
5	What is main difference between lens and plane mirror?	2	CO3	L1
6	Explain a method used to reduce the spherical aberration produced by lenses?	2	CO3	L4
7	Define gravitational potential.	2	CO4	L1
8	State Newton's law of gravitation.	2	CO4	L1
9	Explain photoelectric effect.	2	CO5	L2
10	What are the after-image and Purkinje effects?	2	CO5	L1

PART- B(5x 13 = 65 Marks)

(Restrict to a maximum of 2 subdivisions)

Q.No	Questions	Marks	CO	BL
11 (a)	Write an essay about sun's internal structure with neat diagram.	13	CO1	L2
OR				
11 (b)	Radiation impacts on satellites and navigation.	13	CO1	L2
12 (a)	Discuss in detail about various modes of heat transfer along with mathematical representation.	13	CO2	L3
OR				
12 (b)	Draw and describe the theories of evolution of black body radiation.	13	CO2	L3
13 (a)	What is chromatic aberration? Explain longitudinal aberration. Write about achromatism of two thin lenses separated by a distance and explain how it can reduce chromatic aberration.	13	CO3	L4
OR				

13 (b)	Derive achromatism of two thin lenses separated by a distance and explain how it can reduce chromatic aberration. Analyze how spherical aberration can be minimized. Any two approaches	13	CO3	<u>L4</u>
14 (a)(i) (ii)	Derive earth 'g' variation as a function of height. Let's consider an International Space Station is designed to operate at an altitude of 1000 km. When completed, it will have a weight (measured at the Earth's surface) of 4.22×10^6 N. What is 'g' at this height? Also find its weight when in orbit?	7+6	CO4	<u>L3,L5</u>
OR				
14 (b) (i) (ii)	State and derive Kepler's third law. Calculate the period of Mercury's orbit around the Sun. Its radius is 2.43×10^6 m, respectively. Its distance from sun is 5.79×10^{10} m. The mass of sun is 1.99×10^{30} kg	7+6	CO4	<u>L3,L5</u>
15 (a)	Discuss the processing steps of photofilm.	13	CO5	<u>L4</u>
OR				
15 (b)	Draw and explain the mechanism of photomultipliers and photoconductors.	13	CO5	<u>L4</u>

PART- C(1x 15 = 15 Marks)
(Q.No.16 is compulsory)

Q.No	Questions	Marks	CO	BL
16. (i)	Explain forced convective heat transfer?	3	CO2	<u>L4</u>
(ii)	Consider a hollow sphere satellite with the outer diameter is 4 m, and the shell thickness of 10 mm is reentering the atmosphere. The shell satellite is made of stainless steel with properties of $\rho = 8238 \text{ kg/m}^3$, $C_p = 5468 \text{ J/kg}\cdot\text{K}$, and $k = 13.4 \text{ W/m}\cdot\text{K}$. During the reentry, the effective atmosphere temperature surrounding the satellite is 1250°C with convection heat transfer coefficient of $130 \text{ W/m}^2\cdot\text{K}$. If the initial temperature of the shell is 10°C , determine the shell temperature after 5 minutes of reentry. Assume heat transfer occurs only on the satellite shell.	12	CO2	<u>L5</u>

